Sains
Malaysiana 54(11)(2025): 2589-2604
http://doi.org/10.17576/jsm-2025-5411-02
Perbezaan
Impak Super El Niño terhadap Taburan Hujan di Asia Tenggara
(Differences in
the Impact of Super El Niño on Rainfall in Southeast Asia)
NOOR AMALINA BOKRI1,
ESTER SALIMUN1,2,*,
ABDUL AZIM AMIRUDIN1, MUHAMAD ZUHAIRI1, AFIQAH BAHIRAH
AYOUB1 & NUR LIYANA ISMAIL1
1Jabatan Sains
Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Pusat
Penyelidikan Ekosistem Marin (EKOMAR), Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
28 July 2025/Accepted: 5 November 2025
Abstrak
Perbezaan keamatan
El Niño Southern Oscillations (ENSO)
akan menghasilkan kesan yang berbeza terhadap taburan hujan. Memahami perbezaan
dalam mekanisme dan tele-hubungan antara kejadian yang berbeza adalah sangat
penting untuk menganggarkan kesannya pada masa hadapan. Asia Tenggara (AT)
dipilih sebagai lokasi kajian kerana ia terletak berhampiran dengan
khatulistiwa dan sangat terdedah kepada kesan keragaman iklim. Nilai tambah
kajian ini adalah meneliti perbezaan impak tele-hubungan terhadap taburan hujan
semasa peristiwa super El Niño (1982/83, 1997/98 & 2015/16) di AT, sekali
gus memberikan perspektif perbandingan yang sebelum ini kurang diberi perhatian
dalam kajian terdahulu. Tiga tahun El Niño telah dipilih untuk kajian ini dan
hasil daripada analisis menunjukkan bahawa kekuatan, corak dan jenis El Niño
memainkan peranan dalam membentuk taburan hujan musiman di rantau ini melalui
mekanisme tele-hubungan yang berbeza. Antara
ketiga-tiga super El Niño tersebut, El Niño pada 1997/98 memberikan impak
keadaan kering signifikan di AT terutamanya di kawasan selatan (Indonesia dan Filipina) semasa musim SON dengan -2 mm/hari (anomali
piawai di bawah min). Keadaan pengeringan yang
lebih ekstrem ini berkait rapat dengan kewujudan fasa puncak IOD positif yang
kuat secara serentak berbanding dua super El Niño yang
lain. Penggunaan data stesen dalam kajian lanjutan disarankan untuk
meningkatkan ketepatan penilaian impak terhadap lokaliti di AT semasa fenomena super
El Niño.
Kata kunci: Asia Tenggara; super El Niño; taburan
hujan; tele-hubungan
Abstract
The different
intensities of El Niño Southern Oscillations (ENSO) will induce different
impacts on the rainfall distribution. Understanding the differences in mechanisms
and teleconnections between different events is crucial to estimating future
impacts. Southeast Asia (SEA) is chosen as the study location as it lies near
the equator, which is prone to face the impacts of climate variabilities. The
added value of this research lies in examining the differential impacts of the super
El Niño events (1982/83, 1997/98, and 2015/16) and their teleconnections on
rainfall distribution across SEA, thereby addressing a comparative perspective
that has been largely overlooked in previous studies. The results indicate that
the strength, pattern, and type of El Niño shape the seasonal rainfall
distribution in the region through distinct teleconnection mechanisms. Significant
rainfall anomalies are detected across SEA especially over the southern part
(Indonesia and Philippines) during the SON season for all three super El Niño
events. Among them, the 1997/98 event exhibits the strongest negative
precipitation anomalies, -2 mm/day (standardised anomaly below the mean). This
pronounced drying can be attributed to the concurrent peak of a strong positive
IOD phase. The use of station data in future studies is recommended to improve
the accuracy of impact assessments on localities in SEA during super El Niño
events.
Keywords: Precipitation; Southeast Asia; super
El Niño; teleconnection
REFERENCES
Aminoto, T., Faqih, A., Koesmaryono, Y. & Dasanto, B.D. 2024. Rainfall anomaly response to ENSO and IOD
teleconnections in the CORDEX-SEA simulations. Paper presented at the IOP Conference Series: Earth and
Environmental Science.
Amirudin, A.A.,
Salimun, E., Tangang, F., Juneng, L. & Zuhairi, M. 2020. Differential influences
of teleconnections from the Indian and Pacific Oceans on rainfall variability in
Southeast Asia. Atmosphere 11(9): 886.
Ashok, K.,
Behera, S.K., Rao, S.A., Weng, H. & Yamagata, T. 2007. El Niño Modoki and
its possible teleconnection. Journal of
Geophysical Research 112(C11).
Caesar, J.,
Alexander, L.V., Trewin, B., Tse-ring, K., Sorany, L., Vuniyayawa, V., Keosavang,
N., Shimana, A., Htay, M.M., Karmacharya, J., Jayasinghearachchi, D.A.,
Sakkamart, J., Soares, E., Hung, L.T., Thuong, L.T., Hue, C.T., Dung, N.T.T.,
Hung, P.V., Cuong, H.D., Cuong, N.M. & Sirabaha, S. 2011. Changes in
temperature and precipitation extremes over the Indo-Pacific region from 1971
to 2005. International Journal of
Climatology 31(6): 791-801.
doi:https://doi.org/10.1002/joc.2118
Callahan, C.W.
& Mankin, J.S. 2023. Persistent effect of El Niño on global economic
growth. Science 380(6649): 1064-1069.
doi:10.1126/science.adf2983
Chaturvedi, S.
& Mansi. 2022. Types of biomass burning in South East Asia and its impact
on health. EQA - International Journal of
Environmental Quality 50(1):
55-79. doi:10.6092/issn.2281-4485/15539
Chen, L., Li,
T., Wang, B. & Wang, L. 2017. Formation mechanism for 2015/16 super El
Niño. Scientific Reports 7(1).
Cui, L., Zhu,
C., Zou, Z., Yao, C., Zhang, C. & Li, Y. 2023. The spatiotemporal
characteristics of wildfires across Australia and their connections to extreme
climate based on a combined hydrological drought index. Fire 6(2): 42.
Dhungana, S.,
Shrestha, S., Pham van, T., Kc, S., Das Gupta, A. & Lai, T. 2022. Evaluation of gridded precipitation products
in the selected sub-basins of Lower Mekong River Basin. Theoretical
and Applied Climatology 151: 293-310.
Doi, T.,
Behera, S.K. & Yamagata, T. 2020. Predictability of the super IOD event in
2019 and its link with El Niño Modoki. Geophysical
Research Letters 47(7):
e2019GL086713. doi:https://doi.org/10.1029/2019GL086713
Fu, C., Diaz,
H.F. & Fletcher, J.O. 1986. Characteristics of the response of sea surface
temperature in the Central Pacific associated with warm episodes of the
southern oscillation. Monthly Weather
Review 114(9): 1716-1739.
Hendon, H.H.,
Lim, E., Wang, G., Alves, O. & Hudson, D. 2009. Prospects for predicting
two flavors of El Niño. Geophys. Res.
Lett. 36(19): L19713.
Hong, C.C.
& Li, T. 2009. The extreme cold anomaly over Southeast Asia in February
2008: Roles of ISO and ENSO. Journal of
Climate 22(13): 3786-3801.
Hong, L.C.,
Lin, H. & Jin, F.F. 2014. A southern hemisphere booster of super El Niño. Geophys. Res. Lett. 41(6): 2142-2149.
Huang, B.,
L'Heureux, M., Hu, Z-Z. & Zhang, H-M. 2016. Ranking the strongest ENSO
events while incorporating SST uncertainty. Geophys.
Res. Lett. 43(17):
9165-9172. doi:https://doi.org/10.1002/2016GL070888
Iskandar, I.,
Lestrai, D.O. & Nur, M. 2019. Impact of El Niño and El Niño Modoki events
on Indonesian rainfall. Journal of
Science 23: 217-222.
Juneng, L.
& Tangang, F.T. 2005. Evolution of ENSO-related rainfall anomalies in
Southeast Asia region and its relationship with atmosphere ocean variations in
Indo-Pacific sector. Climate Dynamics 25(1): 337-350.
Kalnay, E.,
Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W.,
Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A.,
Reynolds, R., Jenne, R. & Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis
project. Bulletin of the American
Meteorological Society 77(3):
437-472. doi:https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kemarau, R.A., Boo, W.H., Sakawi, Z., Dambul, R., Suab, S.A., Jaafar, W.S.W.M. & Norzin, M.A.F. 2024. Impact of El Niño, Indian Ocean dipole, and Madden–Julian oscillation on land surface temperature in Kuching City Sarawak, during the periods of 1997/1998 and 2015/2016: a pilot study. Journal of Water and Climate Change 15(8): 3702-3723.
Kao, H-Y. &
Yu, J-Y. 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate 22(3): 615-632. doi:https://doi.org/10.1175/2008JCLI2309.1
Khadka, D.,
Babel, M.S., Abatan, A.A. & Collins, M. 2022. An evaluation of CMIP5 and
CMIP6 climate models in simulating summer rainfall in the Southeast Asian
monsoon domain. International Journal of
Climatology 42(2):
1181-1202. doi:10.1002/joc.7296
Kim, J-W. &
An, S-I. 2018. Origin of early-spring central Pacific warming as the 1982-1983
El Niño precursor. International Journal
of Climatology 38(6):
2899-2906.
Kogan, F. &
Guo, W. 2017. Strong 2015-2016 El Niño and implication to global ecosystems
from space data. International Journal of
Remote Sensing 38(1):
161-178. doi:10.1080/01431161.2016.1259679
Kug, J-S., Jin,
F-F. & An, S-I. 2009. Two types of El Niño events: Cold tongue El Niño and warm
pool El Niño. Journal of Climate 22(6): 1499-1515. doi:https://doi.org/10.1175/2008JCLI2624.1
Kurniadi, A.,
Weller, E., Kim, Y.H. & Min, S.K. 2022. Evaluation of CMIP6
model‐simulated extreme precipitation over Indonesia. International Journal of Climatology 43: 174-196.
Lim, Y-K.,
Kovach, R.M., Pawson, S. & Vernieres, G. 2017. The 2015/16 El Niño event in
context of the MERRA-2 reanalysis: A comparison of the tropical pacific with
1982/83 and 1997/98. Journal of Climate 30(13): 4819-4842.
Lin, J. &
Qian, T. 2019. A new picture of the global impacts of El Nino-southern oscillation. Scientific Reports 9(1): 17543.
doi:10.1038/s41598-019-54090-5
Liu, L., Yang,
G., Zhao, X., Feng, L., Han, G., Wu, Y. & Yu, W. 2017. Why was the Indian
Ocean Dipole weak in the context of the extreme El Niño in 2015? Journal of Climate 30(12): 4755-4761. doi:https://doi.org/10.1175/JCLI-D-16-0281.1
Liu, Y., Cai,
W., Lin, X., Li, Z. & Zhang, Y. 2023. Nonlinear El Niño impacts on the
global economy under climate change. Nature
Communications 14: 58-87.
doi:https://doi.org/10.1038/s41467-023-41551-9
Luo, J-J.,
Zhang, R., Behera, S.K., Masumoto, Y., Jin, F-F., Lukas, R. & Yamagata, T.
2010. Interaction between El Niño and extreme Indian Ocean Dipole. Journal of Climate 23(3): 726-742. doi:https://doi.org/10.1175/2009JCLI3104.1
Meyers, G.,
McIntosh, P., Pigot, L. & Pook, M. 2007. The years of El Niño, La Niña, and
interactions with the tropical Indian Ocean. Journal of Climate 20(13):
2872-2880. doi:https://doi.org/10.1175/JCLI4152.1
Murtugudde, R.,
McCreary Jr., J.P. & Busalacchi, A.J. 2000. Oceanic processes associated
with anomalous events in the Indian Ocean with relevance to 1997-1998. J. Geophys. Res. 105(C2): 3295-3306. doi:https://doi.org/10.1029/1999JC900294
Nguyen-Le, D.,
Ngo-Duc, T. & Matsumoto, J. 2024. The teleconnection of the two types of
ENSO and Indian Ocean Dipole on Southeast Asian autumn rainfall anomalies. Climate Dynamics 6: 1-23.
Nguyen-Thanh,
H., Ngo-Duc, T. & Herrmann, M. 2023. The distinct impacts of the two types
of ENSO on rainfall variability over Southeast Asia. Climate Dynamics 61(5):
2155-2172. doi:10.1007/s00382-023-06673-2
Nur’utami, M.N.
& Hidayat, R. 2016. Influences of IOD and ENSO to Indonesian rainfall variability:
Role of atmosphere-ocean interaction in the Indo-pacific sector. Procedia Environmental Sciences 33: 196-203. doi:https://doi.org/10.1016/j.proenv.2016.03.070
Paek, H., Yu,
J-Y. & Qian, C. 2017. Why were the 2015/2016 and 1997/1998 extreme El Niños
different? Geophys. Res. Lett. 44(4): 1848-1856.
Saji, N.H.,
Goswami, B.N., Vinayachandran, P.N. & Yamagata, T. 1999. A dipole mode in
the tropical Indian Ocean. Nature 401(6751): 360-363. doi:10.1038/43854
Salimun, E.,
Tangang, F., Juneng, L., Behera, S.K. & Yu, W. 2014. Differential impacts
of conventional El Niño versus El Niño Modoki on Malaysian rainfall anomaly
during winter monsoon. Int. J. Climatol. 34(8): 2763-2774.
Santoso, A.,
Mcphaden, M.J. & Cai, W. 2017. The defining characteristics of ENSO extremes
and the strong 2015/2016 El Niño. Reviews of Geophysics 55(4): 1079-1129. doi:https://doi.org/10.1002/2017RG000560
Schneider, U.,
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B. & Ziese, M. 2011. GPCC Full Data Reanalysis Version 6.0 at
1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based
and Historic Data. https://opendata.dwd.de/climate_environment/GPCC/html/fulldata_v6_doi_download.html
Sri Nurdiati,
Fahren Bukhari, Muhammad Tito Julianto, Ardhasena Sopaheluwakan, Mega Aprilia,
Ibnu Fajar, Pandu Septiawan & Mohamad Khoirun Najib. 2022. The impact of El
Niño southern oscillation and Indian Ocean Dipole on the burned area in
Indonesia. Terrestrial, Atmospheric and
Oceanic Sciences 33: 16.
doi:10.1007/s44195-022-00016-0
Suhaila, J.,
Deni, S.M., Zin, W.W. & Jemain, A.A. 2010. Trends in Peninsular Malaysia
rainfall data during the southwest monsoon and northeast monsoon seasons: 1975-2004. Sains Malaysiana 39(4): 533-542.
Supari,
Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A. & Juneng, L. 2018.
ENSO modulation of seasonal rainfall and extremes in
Indonesia. Climate Dynamics 51(7): 2559-2580.
doi:10.1007/s00382-017-4028-8
Tangang, F. 2010. Climate
Change: Is Southeast Asia up to the Challenge?: The Roles of Climate
Variability and Climate Change on Smoke Haze Occurrences in Southeast Asia
Region. LSE IDEAS: http://eprints.lse.ac.uk/id/eprint/43571
Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A. F. & Juneng, L. 2017. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. International Journal of Climatology 37(S1): 696-716.
Tangang, F., Juneng, L., Salimun, E. & Jamaluddin, A. 2019. Scientific understanding of El Niño-Southern Oscillation (ENSO) and its climatic impacts in Malaysia and surrounding region. In Academy of Sciences Malaysia.
Thirumalai, K.,
DiNezio, P.N., Okumura, Y. & Deser, C. 2017. Extreme temperatures in
Southeast Asia caused by El Niño and worsened by global warming. Nature Communications 8(1): 15531.
Wang, C. &
Wang, X. 2013. Classifying El Niño Modoki I and II by different impacts on
rainfall in Southern China and typhoon tracks. Journal of Climate 26(4):
1322-1338. doi:https://doi.org/10.1175/JCLI-D-12-00107.1
Yu, L. &
Rienecker, M.M. 1999. Mechanisms for the Indian Ocean warming during the 1997-98
El Niño. Geophysical Research Letters 26(6): 735-738. doi:https://doi.org/10.1029/1999GL900072
Zhang, F.M.,
Qu, X.H. & Ye, S.H. 2009. Uncertainty analysis in large-scale measurement
based on Monte Carlo simulation method. Jisuanji
Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS 15(1): 184-187, 196.
*Corresponding author; email: ester@ukm.edu.my