Sains Malaysiana 54(11)(2025): 2589-2604

http://doi.org/10.17576/jsm-2025-5411-02

 

Perbezaan Impak Super El Niño terhadap Taburan Hujan di Asia Tenggara

(Differences in the Impact of Super El Niño on Rainfall in Southeast Asia)

 

NOOR AMALINA BOKRI1, ESTER SALIMUN1,2,*, ABDUL AZIM AMIRUDIN1, MUHAMAD ZUHAIRI1, AFIQAH BAHIRAH AYOUB1 & NUR LIYANA ISMAIL1

 

1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Pusat Penyelidikan Ekosistem Marin (EKOMAR), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 28 July 2025/Accepted: 5 November 2025

 

Abstrak

Perbezaan keamatan El Niño Southern Oscillations (ENSO) akan menghasilkan kesan yang berbeza terhadap taburan hujan. Memahami perbezaan dalam mekanisme dan tele-hubungan antara kejadian yang berbeza adalah sangat penting untuk menganggarkan kesannya pada masa hadapan. Asia Tenggara (AT) dipilih sebagai lokasi kajian kerana ia terletak berhampiran dengan khatulistiwa dan sangat terdedah kepada kesan keragaman iklim. Nilai tambah kajian ini adalah meneliti perbezaan impak tele-hubungan terhadap taburan hujan semasa peristiwa super El Niño (1982/83, 1997/98 & 2015/16) di AT, sekali gus memberikan perspektif perbandingan yang sebelum ini kurang diberi perhatian dalam kajian terdahulu. Tiga tahun El Niño telah dipilih untuk kajian ini dan hasil daripada analisis menunjukkan bahawa kekuatan, corak dan jenis El Niño memainkan peranan dalam membentuk taburan hujan musiman di rantau ini melalui mekanisme tele-hubungan yang berbeza. Antara ketiga-tiga super El Niño tersebut, El Niño pada 1997/98 memberikan impak keadaan kering signifikan di AT terutamanya di kawasan selatan (Indonesia dan Filipina) semasa musim SON dengan -2 mm/hari (anomali piawai di bawah min). Keadaan pengeringan yang lebih ekstrem ini berkait rapat dengan kewujudan fasa puncak IOD positif yang kuat secara serentak berbanding dua super El Niño yang lain. Penggunaan data stesen dalam kajian lanjutan disarankan untuk meningkatkan ketepatan penilaian impak terhadap lokaliti di AT semasa fenomena super El Niño.

Kata kunci: Asia Tenggara; super El Niño; taburan hujan; tele-hubungan

 

Abstract

The different intensities of El Niño Southern Oscillations (ENSO) will induce different impacts on the rainfall distribution. Understanding the differences in mechanisms and teleconnections between different events is crucial to estimating future impacts. Southeast Asia (SEA) is chosen as the study location as it lies near the equator, which is prone to face the impacts of climate variabilities. The added value of this research lies in examining the differential impacts of the super El Niño events (1982/83, 1997/98, and 2015/16) and their teleconnections on rainfall distribution across SEA, thereby addressing a comparative perspective that has been largely overlooked in previous studies. The results indicate that the strength, pattern, and type of El Niño shape the seasonal rainfall distribution in the region through distinct teleconnection mechanisms. Significant rainfall anomalies are detected across SEA especially over the southern part (Indonesia and Philippines) during the SON season for all three super El Niño events. Among them, the 1997/98 event exhibits the strongest negative precipitation anomalies, -2 mm/day (standardised anomaly below the mean). This pronounced drying can be attributed to the concurrent peak of a strong positive IOD phase. The use of station data in future studies is recommended to improve the accuracy of impact assessments on localities in SEA during super El Niño events.

Keywords: Precipitation; Southeast Asia; super El Niño; teleconnection

 

REFERENCES

Aminoto, T., Faqih, A., Koesmaryono, Y. & Dasanto, B.D. 2024. Rainfall anomaly response to ENSO and IOD teleconnections in the CORDEX-SEA simulations. Paper presented at the IOP Conference Series: Earth and Environmental Science.

Amirudin, A.A., Salimun, E., Tangang, F., Juneng, L. & Zuhairi, M. 2020. Differential influences of teleconnections from the Indian and Pacific Oceans on rainfall variability in Southeast Asia. Atmosphere 11(9): 886.

Ashok, K., Behera, S.K., Rao, S.A., Weng, H. & Yamagata, T. 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research 112(C11).

Caesar, J., Alexander, L.V., Trewin, B., Tse-ring, K., Sorany, L., Vuniyayawa, V., Keosavang, N., Shimana, A., Htay, M.M., Karmacharya, J., Jayasinghearachchi, D.A., Sakkamart, J., Soares, E., Hung, L.T., Thuong, L.T., Hue, C.T., Dung, N.T.T., Hung, P.V., Cuong, H.D., Cuong, N.M. & Sirabaha, S. 2011. Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. International Journal of Climatology 31(6): 791-801. doi:https://doi.org/10.1002/joc.2118

Callahan, C.W. & Mankin, J.S. 2023. Persistent effect of El Niño on global economic growth. Science 380(6649): 1064-1069. doi:10.1126/science.adf2983

Chaturvedi, S. & Mansi. 2022. Types of biomass burning in South East Asia and its impact on health. EQA - International Journal of Environmental Quality 50(1): 55-79. doi:10.6092/issn.2281-4485/15539

Chen, L., Li, T., Wang, B. & Wang, L. 2017. Formation mechanism for 2015/16 super El Niño. Scientific Reports 7(1).

Cui, L., Zhu, C., Zou, Z., Yao, C., Zhang, C. & Li, Y. 2023. The spatiotemporal characteristics of wildfires across Australia and their connections to extreme climate based on a combined hydrological drought index. Fire 6(2): 42.

Dhungana, S., Shrestha, S., Pham van, T., Kc, S., Das Gupta, A. & Lai, T. 2022. Evaluation of gridded precipitation products in the selected sub-basins of Lower Mekong River Basin. Theoretical and Applied Climatology 151: 293-310.

Doi, T., Behera, S.K. & Yamagata, T. 2020. Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophysical Research Letters 47(7): e2019GL086713. doi:https://doi.org/10.1029/2019GL086713

Fu, C., Diaz, H.F. & Fletcher, J.O. 1986. Characteristics of the response of sea surface temperature in the Central Pacific associated with warm episodes of the southern oscillation. Monthly Weather Review 114(9): 1716-1739.

Hendon, H.H., Lim, E., Wang, G., Alves, O. & Hudson, D. 2009. Prospects for predicting two flavors of El Niño. Geophys. Res. Lett. 36(19): L19713.

Hong, C.C. & Li, T. 2009. The extreme cold anomaly over Southeast Asia in February 2008: Roles of ISO and ENSO. Journal of Climate 22(13): 3786-3801.

Hong, L.C., Lin, H. & Jin, F.F. 2014. A southern hemisphere booster of super El Niño. Geophys. Res. Lett. 41(6): 2142-2149.

Huang, B., L'Heureux, M., Hu, Z-Z. & Zhang, H-M. 2016. Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett. 43(17): 9165-9172. doi:https://doi.org/10.1002/2016GL070888

Iskandar, I., Lestrai, D.O. & Nur, M. 2019. Impact of El Niño and El Niño Modoki events on Indonesian rainfall. Journal of Science 23: 217-222.

Juneng, L. & Tangang, F.T. 2005. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere ocean variations in Indo-Pacific sector. Climate Dynamics 25(1): 337-350.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. & Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3): 437-472. doi:https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kemarau, R.A., Boo, W.H., Sakawi, Z., Dambul, R., Suab, S.A., Jaafar, W.S.W.M. & Norzin, M.A.F. 2024. Impact of El Niño, Indian Ocean dipole, and Madden–Julian oscillation on land surface temperature in Kuching City Sarawak, during the periods of 1997/1998 and 2015/2016: a pilot study. Journal of Water and Climate Change 15(8): 3702-3723.

Kao, H-Y. & Yu, J-Y. 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate 22(3): 615-632. doi:https://doi.org/10.1175/2008JCLI2309.1

Khadka, D., Babel, M.S., Abatan, A.A. & Collins, M. 2022. An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology 42(2): 1181-1202. doi:10.1002/joc.7296

Kim, J-W. & An, S-I. 2018. Origin of early-spring central Pacific warming as the 1982-1983 El Niño precursor. International Journal of Climatology 38(6): 2899-2906.

Kogan, F. & Guo, W. 2017. Strong 2015-2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing 38(1): 161-178. doi:10.1080/01431161.2016.1259679

Kug, J-S., Jin, F-F. & An, S-I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate 22(6): 1499-1515. doi:https://doi.org/10.1175/2008JCLI2624.1

Kurniadi, A., Weller, E., Kim, Y.H. & Min, S.K. 2022. Evaluation of CMIP6 model‐simulated extreme precipitation over Indonesia. International Journal of Climatology 43: 174-196.

Lim, Y-K., Kovach, R.M., Pawson, S. & Vernieres, G. 2017. The 2015/16 El Niño event in context of the MERRA-2 reanalysis: A comparison of the tropical pacific with 1982/83 and 1997/98. Journal of Climate 30(13): 4819-4842.

Lin, J. & Qian, T. 2019. A new picture of the global impacts of El Nino-southern oscillation. Scientific Reports 9(1): 17543. doi:10.1038/s41598-019-54090-5

Liu, L., Yang, G., Zhao, X., Feng, L., Han, G., Wu, Y. & Yu, W. 2017. Why was the Indian Ocean Dipole weak in the context of the extreme El Niño in 2015? Journal of Climate 30(12): 4755-4761. doi:https://doi.org/10.1175/JCLI-D-16-0281.1

Liu, Y., Cai, W., Lin, X., Li, Z. & Zhang, Y. 2023. Nonlinear El Niño impacts on the global economy under climate change. Nature Communications 14: 58-87. doi:https://doi.org/10.1038/s41467-023-41551-9

Luo, J-J., Zhang, R., Behera, S.K., Masumoto, Y., Jin, F-F., Lukas, R. & Yamagata, T. 2010. Interaction between El Niño and extreme Indian Ocean Dipole. Journal of Climate 23(3): 726-742. doi:https://doi.org/10.1175/2009JCLI3104.1

Meyers, G., McIntosh, P., Pigot, L. & Pook, M. 2007. The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate 20(13): 2872-2880. doi:https://doi.org/10.1175/JCLI4152.1

Murtugudde, R., McCreary Jr., J.P. & Busalacchi, A.J. 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998. J. Geophys. Res. 105(C2): 3295-3306. doi:https://doi.org/10.1029/1999JC900294

Nguyen-Le, D., Ngo-Duc, T. & Matsumoto, J. 2024. The teleconnection of the two types of ENSO and Indian Ocean Dipole on Southeast Asian autumn rainfall anomalies. Climate Dynamics 6: 1-23.

Nguyen-Thanh, H., Ngo-Duc, T. & Herrmann, M. 2023. The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia. Climate Dynamics 61(5): 2155-2172. doi:10.1007/s00382-023-06673-2

Nur’utami, M.N. & Hidayat, R. 2016. Influences of IOD and ENSO to Indonesian rainfall variability: Role of atmosphere-ocean interaction in the Indo-pacific sector. Procedia Environmental Sciences 33: 196-203. doi:https://doi.org/10.1016/j.proenv.2016.03.070

Paek, H., Yu, J-Y. & Qian, C. 2017. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 44(4): 1848-1856.

Saji, N.H., Goswami, B.N., Vinayachandran, P.N. & Yamagata, T. 1999. A dipole mode in the tropical Indian Ocean. Nature 401(6751): 360-363. doi:10.1038/43854

Salimun, E., Tangang, F., Juneng, L., Behera, S.K. & Yu, W. 2014. Differential impacts of conventional El Niño versus El Niño Modoki on Malaysian rainfall anomaly during winter monsoon. Int. J. Climatol. 34(8): 2763-2774.

Santoso, A., Mcphaden, M.J. & Cai, W. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics 55(4): 1079-1129. doi:https://doi.org/10.1002/2017RG000560

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B. & Ziese, M. 2011. GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. https://opendata.dwd.de/climate_environment/GPCC/html/fulldata_v6_doi_download.html

Sri Nurdiati, Fahren Bukhari, Muhammad Tito Julianto, Ardhasena Sopaheluwakan, Mega Aprilia, Ibnu Fajar, Pandu Septiawan & Mohamad Khoirun Najib. 2022. The impact of El Niño southern oscillation and Indian Ocean Dipole on the burned area in Indonesia. Terrestrial, Atmospheric and Oceanic Sciences 33: 16. doi:10.1007/s44195-022-00016-0

Suhaila, J., Deni, S.M., Zin, W.W. & Jemain, A.A. 2010. Trends in Peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975-2004. Sains Malaysiana 39(4): 533-542.

Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A. & Juneng, L. 2018. ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics 51(7): 2559-2580. doi:10.1007/s00382-017-4028-8

Tangang, F. 2010. Climate Change: Is Southeast Asia up to the Challenge?: The Roles of Climate Variability and Climate Change on Smoke Haze Occurrences in Southeast Asia Region. LSE IDEAS: http://eprints.lse.ac.uk/id/eprint/43571

Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A. F. & Juneng, L. 2017. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. International Journal of Climatology 37(S1): 696-716.

Tangang, F., Juneng, L., Salimun, E. & Jamaluddin, A. 2019. Scientific understanding of El Niño-Southern Oscillation (ENSO) and its climatic impacts in Malaysia and surrounding region. In Academy of Sciences Malaysia.

Thirumalai, K., DiNezio, P.N., Okumura, Y. & Deser, C. 2017. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications 8(1): 15531.

Wang, C. & Wang, X. 2013. Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. Journal of Climate 26(4): 1322-1338. doi:https://doi.org/10.1175/JCLI-D-12-00107.1

Yu, L. & Rienecker, M.M. 1999. Mechanisms for the Indian Ocean warming during the 1997-98 El Niño. Geophysical Research Letters 26(6): 735-738. doi:https://doi.org/10.1029/1999GL900072

Zhang, F.M., Qu, X.H. & Ye, S.H. 2009. Uncertainty analysis in large-scale measurement based on Monte Carlo simulation method. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS 15(1): 184-187, 196.

 

*Corresponding author; email: ester@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next